The low energy ion assisted control of interfacial structure: Ion incident energy effects

نویسندگان

  • X. W. Zhou
  • H. N. G. Wadley
چکیده

The properties of multilayered materials are often dependent upon their interfacial structure. For low temperature deposition processes where the structure is kinetically controlled, the interfacial roughness and the extent of interlayer mixing are primarily controlled by the adatom energy used in the deposition. Inert gas ion assistance during the growth process also enables manipulation of the interfacial roughness and intermixing. To explore inert gas ion assistance, a molecular dynamics approach has been used to investigate the role of ion energy and ion species upon the flattening of various surfaces formed during the growth of the Ni/Cu/Ni multilayers. The results indicated that ion energies in the 1–4 eV range could flatten the ‘‘rough’’ copper islands on either copper or nickel crystals. To flatten the rough nickel islands on copper or nickel crystals, higher ion energies in the 9–15 eV range would have to be used. Significant mixing between nickel island atoms and the underlying copper crystal atoms started to occur as the ion energy was increased to around 6–9 eV. However, little mixing was observed between the copper island atoms and the underlying nickel crystal atoms in the same ion energy range. At a given ion energy, the heavier ~xenon! ions were found to produce more surface flattening and mixing than the lighter ~argon! ions. © 2000 American Institute of Physics. @S0021-8979~00!03512-X#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic assembly of metal surfaces and interfaces

Inert gas ion impacts can be used to manipulate atomic assembly processes during the growth of metallic superlattices but the detailed mechanisms are not well understood. Molecular dynamics simulations are used to investigate the effects of ion incident angle and fluence upon the reassembly and structure of a copper surface partially covered with cobalt asperities. In the low ion energy regime,...

متن کامل

Low-energy ion-assisted control of interfacial structures in metallic multilayers

A molecular dynamics method has been used to simulate the argon ion-assisted deposition of Cu/Co/Cu multilayers and to explore ion beam assistance strategies that can be used during or after the growth of each layer to control interfacial structures. A low-argon ion energy of 5–10 eV was found to minimize a combination of interfacial roughness and interlayer mixing (alloying) during the ion-ass...

متن کامل

The Effects Of Interfacial Roughness On The Argon Ion Implanted Tantalum Films

In the present study, effect of interfacial roughness on the ion implanted Tantalum based surfaces has been investigated. The argon ions with energy of 30 keV and in doses of 1×1017 , 3×1017 , 5×1017 , 7×1017 , and 10×1017  (ion/cm2) have been used at ambient temperature. The Atomic Force Microscopy (AFM), analysis have been used to study and characterize the surfaces morphology. The effect of ...

متن کامل

Low energy ion assisted control of interfacial structure: Ion fluence effects

Multilayered thin films consisting of high electrical conductivity copper layers sandwiched between pairs of low coercivity ferromagnetic alloys can exhibit giant magnetoresistance. The magnitude of the magnetoresistance increases with the structural and chemical perfection of the interfaces. Recent atomistic modeling and experimental observations have shown that nickel and cobalt atoms in the ...

متن کامل

Low Energy Ion Assisted Vapor Deposition

The performance of multilayered thin film materials often depends sensitively upon the (physical) roughness and degree of (chemical) mixing at interfaces. Irradiation of a growth surface with an assisting ion beam is often used to modify surface roughness. Molecular dynamics has been used to explore the use of low energy (less than 20 eV) Xe+ and Ar+ assisted deposition of model Ni/Cu/Ni multil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000